Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck

3.5 Al for Speedrunning

Michael Cook (King’s College London, GB), Maren Awiszus (Viscom AG — Hannover, DE),
Filippo Carnovalini (VU — Brussels, BE), M Charity (New York University, US), and
Alexander Dockhorn (Leibniz Universitat Hannover, DE)

License @ Creative Commons BY 4.0 International license
© Michael Cook, Maren Awiszus, Filippo Carnovalini, M Charity, and Alexander Dockhorn

Speedrunning refers to a collection of related activities where people play games under specific
conditions — usually trying to complete a game as quickly as possible, but sometimes trying
to complete it with certain restrictions (e.g. while blindfolded), variations (e.g. randomisers
which alter the structure of an otherwise static game), or other feats (e.g. two players sharing
a single controller). Speedrunning is a very popular subculture within games: the official
portal speedrun.com reports 20m annual visits to their site, which hosts over 4.7m individual
speedruns across 43.2k games [1].

Speedrunning remains vastly understudied within game Al research, despite the obvious
parallels between game-playing Al research and time-optimised game-playing. Interestingly,
one of the few pieces of academic writing about speedrunning in games comes from a Dagstuhl
publication [2], with some studies existing from a sociological or cultural perspective outside
of AI [3]. This working group set out to discuss the many problems that exist within
speedrunning for Al researchers to tackle, and then to concretely implement a prototype
platform for speedrunning research with AI systems.

We began by discussing the current state of speedrunning and identifying where there
was potential for impact. The speedrunning community is inventive and resourceful, and
already do a lot of work that would be considered research-grade in some fields: randomisers,
for example, procedurally modify games to make them unpredictable to play, while retaining
consistency in terms of pacing, flow and complexity. We also discussed tool-assisted speedruns
(TAS), where speedruns are executed by a computer replaying pre-defined commands (not
competing with human speedrunners). This allows speedrunners to perform tricks requiring
superhuman skill, but each TAS must be made by hand.

Speedruns, no matter what form they take, usually exploit glitches in games to skip
content or progress faster. These glitches take on many forms, including manipulating data
in memory, forcing physics simulations into edge case scenarios, and causing simultaneous
execution of code through multiple inputs. Many of the most popular Al environments for
game-playing in the past decade are competitive, meaning they are ranked on winrate rather
than time taken. For single-player games used as Al environments, such as DOOM, the
reward signal for the discovery and use of glitches is likely too weak for most Al to use. For
this reason, we chose to use the workgroup to build testing environments for single-player,
open-source and speedrunnable games, so that we can investigate this problem space further
in the future. In the next section we describe our chosen platform, the game engine PICO-8
and the game Celeste.

3.5.1 Celeste and PICO-8

PICO-8 is a fantasy console — a type of game engine specifically designed to be highly

constrained, often mimicking the hardware restrictions in consoles from the 1990s and 1980s.

PICO-8 is perhaps the most popular example of this. Its restrictions include a 128x128 pixel
screen, a palette of 16 colours, a maximum size of 32kb for games, and a limit of 256 game
sprites (see Figure 8). All PICO-8 games are open-source, and are distributed online through
a BBS-like system within PICO-8 itself.

147

24261


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

148

24261 — Computational Creativity for Game Development

Figure 8 The sprite design interface.

Celeste, by EXOK Games, is a “hardcore platformer” released in 2017. The primary
mechanic in the game is dashing — the player can press a button to dash once in any direction,
including in the air. This is reset when they are touching the ground again. Celeste became
popular with speedrunners due to its difficulty level and the high skill ceiling of its controls.
Celeste was expanded into a full game and released in 2018, where it won numerous awards
and sold millions of copies. The full game is also beloved by speedrunners, and has many
specific dedicated speedrun mods and extensions made for it.

We chose PICO-8 as a target domain due to its openness and the ease with which
games can be instrumented and analysed. Celeste was an obvious target for us because its
prominent position in the speedrunning community and its many known glitches and exploits.
However, during the working group we discovered Celeste Tech Training, a PICO-8 game
made specifically to teach speedrunners how to perform certain tricks. We modified this
game to strip out unnecessary functionality, and used its focused levels to test our prototypes
on. Figure 9 shows the first level of this game, which teaches a technique called spike jumping.
Spike jumping allows the player to jump on a specific part of a spike floor without being
hurt.

3.5.2 Approaches

We implemented three different systems for replicating the spike jump technique in Celeste
Tech Training (CTT). Our first system was built into the code — it simulates virtual inputs
and can load and save game states using custom code. This is the least flexible solution as it
needs to be rewritten for different games, but it is the most portable — it is self-contained
within the cart and does not require any external tools.

The second solution leverages Celia [4], a LUA software designed to facilitate the creation
of TASs of PICO-8 games. By modifying the source code of the project, the software was
adapted to automatically create TASs of a simplified Celeste level which requires a spike



Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck

Figure 9 Modified version of CTT.

jump to be beaten (see Figure 9). We implemented a random agent that adds random inputs
every fifth frame of TAS. The distance of the character from the goal position (beyond the
spikes section that requires a spike jump to be cleared) served as an objective function.
Whenever a new shortest distance was achieves, the TAS was saved, providing record of how
it is possible to reach that distance. In our tests®, the random agent was unable to reach the
destination point, but it managed to perform the initial part of the spike jump: it jumped
on the correct pixel at the corner of the spikes, but failed to then perform a dash at the
correct moment to clear the needed distance. A Reinforcement Learning based agent could
probably fare better than this naive random agent, providing more adaptability over our
first approach.

For a more general approach, we designed a Python interface to work with the Celia
software. With the pynput library, this approach used keypresses and Celia command
shortcuts (i.e. loading the TAS files, skipping frames) to play the PICO-8 games frame-by-
frame. Evaluation for this approach would involve retrieving screenshots from the game
through the Celia software. With the frame manipulation, the game could also be reset
to earlier states for tree-searches of optimal paths and keystrokes. With this approach, an
Al-generated speedrun could be made for any PICO-8 game that could be loaded into Celia;
without manipulating the source code of the game or Celia itself.

We tested this methodology on three different games retrieved from the PICO-8 community
BBS?: Get Out of this Dungeon, treeboi_test, and Witch Loves Bullets. With all three
games, randomly made TAS files were successfully generated, loaded, and played in the
Celia software. Future work would look to using tree-search methods such as A* to create
speedruns.

& The modified Celia code is available at https://github.com/Facoch/Celia
9 https://www.lexaloffle.com/bbs/?cat=7

149

24261


https://github.com/Facoch/Celia
https://www.lexaloffle.com/bbs/?cat=7

150

24261 — Computational Creativity for Game Development

3.5.3 Further Work

Our next steps are to clean up and open source these systems, along with publishing our
initial survey of the speedrunning landscape with respect to Al. Beyond that, we believe
Celeste in PICO-8 represents a good domain for an Al competition. Designing the framework
and rules for this competition will also help us clarify what challenges are most interesting,
and begin to grow academic interest around this area.

References
1 Speedrun.com — About. http://www.speedrun.com/about Accessed 3 July 2024.
2 Manuel Lafond. The complexity of speedrunning video games. In 9th International Con-

ference on Fun with Algorithms (FUN 2018). Schloss Dagstuhl — Leibniz-Zentrum fir
Informatik, 2018.

3 Scully-Blaker, Rainforest. Re-curating the Accident: Speedrunning as Community and
Practice. Masters thesis, Concordia University, 2016.

4 gonengazit/Celia. https://github.com/gonengazit/Celia Accessed 9 July 2024.

3.6 Skill-Discovery in (Strategy) Games

Alexander Dockhorn (Leibniz Universitit Hannover, DE), Manuel Eberhardinger (Hochschule
der Medien — Stuttgart, DE), Chengpeng Hu (Southern Univ. of Science and Technology —
Shenzen, CN), and Matthias Miller-Brockhausen (Leiden University, NL)

License ) Creative Commons BY 4.0 International license
© Alexander Dockhorn, Manuel Eberhardinger, Chengpeng Hu, and Matthias Miiller-Brockhausen

Strategy games present a unique challenge in artificial intelligence (AI) research. They can
broadly be classified into two types: turn-based and real-time strategy games. Both types
typically require the player or Al to manage multiple units or resources, often with incomplete
information about the opponent’s actions. The large branching factor and long game duration
make it difficult for AT to explore all possible strategies, which is further complicated by the
need to plan several moves ahead. The state-of-the-art methods in Al for strategy games
include search-based algorithms and reinforcement learning (RL), but these often rely on
human-defined strategies or subgoals, limiting their scalability and generalizability.

While the work on AlphaStar [2, 3] and OpenAl Five [5] have shown that it is possible
to train strong Al agents for complex games such as Starcraft 2 and Dota 2, both works
required massive amounts of compute resources until satisfying results have been achieved.
For the purpose of speeding up the learning process, the working group on skill discovery in
(strategy) games has been formed to evaluate the applicability of skill discovery methods
to this special domain. We particularly emphasize works on skill discovery as part of RL
algorithms. In this context, skill discovery refers to identifying and learning sub-policies or
strategies that can be applied to achieve or identify specific subgoals within a game, thereby
enabling more efficient and scalable Al systems.

3.6.1 Preliminaries of Skill Discovery

Skill discovery in AT remains an open problem, particularly when it comes to discovering
skills without human intervention. The interpretation of what constitutes a “skill” in a given
context is still unclear, making it challenging to develop a unified approach to skill discovery.


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Working groups
	AI for Speedrunning (Michael Cook, Maren Awiszus, Filippo Carnovalini, M Charity, and Alexander Dockhorn)
	Skill-Discovery in (Strategy) Games (Alexander Dockhorn, Manuel Eberhardinger, Chengpeng Hu, and Matthias Müller-Brockhausen)


